Mélanges CRAPEL n° 27

THAT’S NOT ENGLISH,

THAT’S COMPUTING!

Harvey MOULDEN
CRAPEL, Université Nancy 2

Résumé

Cet article rend compte d’une tentative d’amélioration
de la capacité d’étudiants francais en informatique a com-
prendre des documents techniques en anglais. Il s’agit de
les encourager 4 approfondir leur réflexion durant leur lec-
ture. L’auteur propose d’ajouter aux activités de
compréhension traditionnelles, centrées sur la langue, de
taches au cours desquelles on demande aux étudiants d’ex-
plorer a la fois le contenu technique explicite et implicite.

135

Mélanges CRAPEL n° 27

This paper will present an account of how and why its
author failed for several years in succession (1993-1997)
to significantly improve the ability of French learners of
English to deal with technical reading comprehension pro-
blems associated with passive reading, implicit
information and unclear writing. Despite the disappointing
results in the present case, we shall be suggesting that
these kinds of problems are important and might profita-
bly be addressed more often in both mother tongue and
foreign language reading comprehension courses.

The learners involved were University students enrol-
led in a three year course of study for a Master’s level
qualification in computing. Their English courses took up
two hours a week of a heavy and (in Computing particu-
larly) demanding workload.

The stimulus for beginning this work was the observa-
tion that about 40% of these students were failing, year in
year out, to understand parts of texts in English about
Computing whose technical content was well within the
reach of their technical knowledge and which they could
often correctly translate into French. When questioned clo-
sely to see if they had grasped the meaning of these
passages, they were either unable to supply answers or
gave answers that were erroneous.

For instance, an authentic text on data compression
given in class contained the passage below.

In addition to compressing, on-the-fly compressors are
more efficient in their use of disk space. DOS allocates
space to files in clusters, where each cluster is composed of
two to 32 512 byte sectors. A cluster is the minimum allo-
cation unit - no matter how little data is in a file, each file
must be made up of a whole number of sectors. Typical
hard drives have 4-KB clusters, which means that DOS
wastes 3 KB of space in storing a 1-KB file. Since all of the
compressor's interaction with DOS is in a single normal file,
the compressor can allocate space on a thriftier sector
basis.

The last sentence posed the students translation pro-
blems in predictable places (choice of meaning for “ since ”,
interpretation of the noun phrase “ a thriftier sector basis”)

136

That’s not English, that’s computing!

and might well have figured in a traditional “ text plus
questions ” exercise as the basis for a question such as:

“ What is the effect of DOS’s interaction with the compressor in a
single normal file? ”

designed to see what sort of interpretations or trans-
lations the students would come up with for “ on a thriftier
sector basis ”. Once acceptable translations had been
established, the students would be asked to explain
exactly why the fact that interaction with DOS in a single
normal file meant that disk space was going to be used
more efficiently. Now this is a question which gets to the
heart of the understanding of the sentence in a way the
simple “ translation ” question does not. For the answer to
the question is not given explicitly in the text. The author
relies on the reader to use the information given in the pre-
ceding 3 sentences to work this out for himself or herself.
One chain of reasoning might go something like this:

* Compression will normally involve an appreciable
number of files.

* “ the compressor’s interaction with DOS is in a single
normal file ” must mean that all these files when compres-
sed will be concatenated, head to tail with no space wasted
between successive files, into a single file. (This is proba-
bly the key step in the process of understanding.)

* The only disk space wastage incurred when storing
compressed files will be due to the length of the single file
containing them not being equal to a whole number mul-
tiple of 4KB, i.e. will never be more than just under 4KB.

* Which is very little compared with often wasting 1, 2
or 3 KB for each compressed file recorded to disk if you
treat them separately.

The better students, when prompted, managed to pro-
duce diagrammatic illustrations of the situation such as
that below:

5 empty 4KB sectors:

137

Mélanges CRAPEL n° 27

5 two kilobyte files occupy 20 kilobytes of disk space
when the uncompressed files are recorded separately by
DOS:

The same 5 two kilobyte files after concatenation occu-
py only 12 kilobytes of disk space when recorded in a single
normal file by the compressor’s interaction with DOS {and
will actually occupy even less space when compressed):

Many of the students were incapable of “ filling in ” the
meaning of the text in this way', despite the fact that their
previous courses in Computer Architecture had familiarised
them with the way data is recorded on hard disks. In gene-
ral, whenever a text demanded this kind of effort of the
reader, the less able students fell prey to misunderstandings
or understood nothing at all. Worse, they also failed to
understand texts which, apparently, were free of implicit
content that was difficult to understand. Why was this?

The kind of answers students often gave when probed
on their understanding of a text strongly suggested that

1 The brain-work involved here is surely rather greater than that deman-
ded in the general run of reading comprehension questions where correct
inferences have to be drawn. Compare the above example with one given
in the introduction to an exercise designed to prepare the reader for infe-
rential questions given in the TOEFL (Broukal and Nolan Woods, 1991}.

In 1896 the fabulously wealthy John D. Rockefeller declared that the great uni-
versity he had founded was the best investment he had ever made in his life.
What can be inferred from the sentence?

John D. Rockefeller was richer than the vast majority of his fellow
Americans.

Rockefeller was delighted with the university he had founded.
Rockefeller had made other investments in his life.

138

That’s not English, that’s computing!

they had not been thinking very much about what they had
been reading. Indeed, these answers were sometimes, from
a technical point of view, so startlingly wrong as to make
one wonder how certain students had managed to get so far
in their chosen course of studies. What seemed to be hap-
pening was that, faced with a text in English and left to
their own devices, many students would tunnel through it
translating it sentence by sentence (or, worse, word by
word), forgetting each sentence as soon as it was “ done 7,
taking little close interest in what the text was saying and,
above all, rarely asking themselves questions and calling on
textual clues and their own technical knowledge when a
sentence didn’t make much sense. When this happened
students would say things like:

“ Je comprends les mots mais je ne comprends pas ce
qu’il y a dedans. ”

I understand the words (in this sentence) but I don’t
know what it means.

Informal discussion with individual students revealed
again and again that their previous training on computer
literature in English during the preceding one or two years
had been of the form “ sentence by sentence translation
round the class ”. If this approach to reading comprehen-
sion had gone no further than to demand a correct
translation, it may bear some responsibility for the stu-
dents’ translation reflex and their lack of curiosity about the
texts they were now being offered. Exercises of the “ text
plus questions ” type were sometimes mentioned, but it
sounded as though most of the texts were not very techni-
cal and that the questions were usually on explicit content.

It was decided, therefore, to look for and devise activi-
ties aimed at:

* persuading the students that translating correctly is
not necessarily the same thing as understanding

+ getting them into the habit of thinking more about
what they were reading by asking themselves questions as
they read and then to use their specialist knowledge to find
answers to these questions.

The hope was that this more thoughtful, less transla-
tion-oriented approach to reading would help them not only
to better understand fairly straightforward, fairly clearly-

139

Mélanges CRAPEL n° 27

written texts but also to cope with passages where the
author, consciously or not, leaves it to the reader to com-
plete his or her meaning.

Below we will list brief descriptions of the kinds of acti-
vities which were used. The activities ran alongside reading
comprehension work of a more traditional sort (reading for
gist, selective reading, technical vocabulary exercises, exer-
cises on noun phrases, modals, linkwords etc.) as well as
work on listening, speaking and writing.

ACTIVITIES TO DEMONSTRATE THAT TRANSLATING
IS NOT NECESSARILY UNDERSTANDING.

The students were given a short text in French to read
and asked to imagine that they had produced it themselves
by translating from English or some other foreign language.
One text used was that below, taken from the works of a
twentieth century French philosopher and offered, without
comment, as a space-filler for the edification of the public in
the French national daily, Le Monde.

Les trois contresens sur le désir sont : le mettre en rapport
avec le mangue ou la loi; avec une réalité naturelle ou
spontanée; avec le plaisir, ou méme et surtout la féte. Le
désir est toujours agencé, machiné, sur un plan d’imma-
nence ou de composition, qgui doit lui-méme étre construit
en méme temps que le désir agencé et machiné. Nous ne
voulons pas dire seulement gue le désir est historiquement
déterminé. La détermination historique fait appel a une
instance structurale qui jouerait le réle de loi, ou bien de
cause, d’ou le désir naitrait. Tandis que le désir est l'opé-
rateur effectif, qui se confond chaque fois avec les
variables d’un agencement. Ce n’est pas le manque ni la
privation qui donne du désir: on ne manqgue que par rap-
port d un agencement dont on est exclu, mais on ne désire
qu’en fonction d’un agencement ou l'on est inclus (fiit-ce
une association de brigandage ou de révolte).

G. Deleuze: Dialogues

The students were then asked whether they had
understood the text. Nobody ever did, so it would then be
suggested that flawless translation is not necessarily

140

That’s not English, that’s computing!

accompanied by understanding The students would usual-
ly object that they could not be expected to understand
texts on subjects about which they knew nothing at all.

In this case they were asked to translate a short and
easily translatable text on a computing subject with which
they were not familiar but which explained the subject
using concepts they were familiar with. They were then
given a few searching questions to answer concerning the
text they had successfully translated. Advantage of the
ensuing perplexity was taken to make the point that this
time they were no longer on unfamiliar ground, had trans-
lated correctly but had nevertheless not understood
everything. If they then objected that they couldn’ be
expected to understand computing topics they had not yet
been taught in class (and they often did), they were asked
what sort of texts in English they thought they would meet
during their future career. Texts about things they already
knew all about or texts about things they didn’t know all
about? The latter usually. And would they have to translate
them and then hand them in to be marked? Or would they
have to use them to extract the information they needed to
do a job properly?

ACTIVITIES TO GET STUDENTS TO THINK MORE
WHILE READING BY ASKING THEMSELVES QUES-
TIONS

The students were shown how they could generate
questions on a short text by asking “ what? ”, “ why? ”, “
when ? ” and “ how? ”. For example, the passage below

(1) Every time you use your hard disc, it gets a little slo-
wer. (2) Because DOS was written when capacity was
more important than speed, it tries to pack files on disk as
conservatively as possible, dividing them into clusters and
squeezing them as tightly as it can. (3) But organising the
clusters in this way means that DOS has to search all over
the disk for errant clusters, and also means easier file
recovery if you delete a file by mistake.

might raise the following questions:

141

Meélanges CRAPEL n°® 27

Sentence 1: What gets slower? Does the disk go round slower or
does reading from and writing to the disc slow down? Why is there
a slowing down?

Sentence 2: What does capacity mean exactly in this context?
What does as conservatively as possible mean? How can you pack
files on disk as conservatively as possible? What does squeezing
mean exactly?

Sentence 3: What are errant clusters? Why does this organisation
mean you have to search all over the disk for errant clusters? Why
does it lead to easier file recovery if you delete a file by mistake?

The students were asked to suggest answers to these
questions.

Some of the questions are easy (the first two concerning
sentence 1 for example). But others are more difficult. In
particular, the last 3 questions on sentence 2. Here, by tal-
king about pack(ing) files on disk as conservatively as
possible and squeezing them as tightly as it can the author
sacrifices clarity to raciness of style. In fact, this sentence is
so imprecise that anyone unfamiliar with the subject is pro-
bably not going to be able to understand the next sentence
(But organising the clusters in this way means that...) If one
does not already have, from previous knowledge, a clear
mental picture of the way data is recorded to disk, one is
going to be hard put to it to see why DOS has to search all
over the disk for errant clusters and why you get easier file
recovery if you delete a file by mistake.

So the point of getting learners to ask themselves ques-
tions like this was to ensure that they would get involved
with what the text was saying and mobilise any knowledge
available to them which might help them to understand
what they were reading. The learners were encouraged to
apply the questioning approach above whenever detailed
comprehension was needed. It was suggested to them that
they underline sentences where difficulties subsisted and
that, as they read on, they return from time to time to these
sentences to see if new information could throw any light on
their meaning. When faced with difficulties, the learners
could also scan ahead in the text for iconic clues or for repe-
titions of poorly understood words to see if fresh contexts
provided further clues.

142

That’s not English, that’s computing!

Asking people to call upon subject knowledge to aid
comprehension is all very well, but sometimes the students
did not possess the necessary knowledge. In this case, they
were referred to a second text which supplied the informa-
tion needed in a more explicit form. “ Text-branching ” of
this sort, if pursued further, could lead to the original text
disappearing from view, so to speak. This need not neces-
sarily be a problem, though, within a larger time-scale than
that of an exercise intended to be finished before the end of
a class. In fact, leaping back and forth between texts was
encouraged in another long-term exercise intended to deve-
lop curiosity during reading. Projects were given where the
students had to individually research computing subjects
on the Internet. The research was carried out by first of all
assembling a relevant introductory text or collection of texts
and then acquiring thoroughgoing knowledge of their
content by branching out towards fresh texts when
concepts mentioned in the starting texts were unfamiliar or
incompletely or poorly explained.

The learners were given practice in thinking about what
they were reading via teacher-set questions and tasks that
probed to what extent a passage had been understood in a
more searching way than the traditional type of compre-
hension question which merely requires location and
translation of explicit information. When the students got
into difficulty, they were counselled individually on what
other questions they could ask themselves and how they
could reason their way to a plausible solution of the pro-
blem. Below is a list of the types of tasks used. Some of
them (explaining meanings of words, diagram drawing,) are
familiar. Others may be more original, particularly as
regards the technicality of the thinking they require. The
text extracts used were authentic and were mostly drawn
from Byte.

Say exactly what a word or term means in context.

For example, in the text “ On the fly compression ”
(Appendix 1) the students were asked to explain what they
understood the word “ invisible ” to mean in the paragraph
below.

LZ and similar techniques make for fast compression and
decompression, although decompression is usually

143

Meélanges CRAPEL n° 27

somewhat faster. Both attributes serve on-the-fly com-
pressors, since speed is critical for invisible operation and
read accesses are often far more common than writes.

A common, if understandable reaction, was to take the
word at its face value and say: “ invisible ” means “ can’t be
seen ” and leave it at that, no questions asked. When pres-
sed to explain further, students would say that “ visible
operation ” was what you could see happening on the com-
puter screen whereas “ invisible operation ” was what
happened out of sight inside the computer. They were less
forthcoming when asked to explain why they thought the
text was saying that speed was so important for what hap-
pened inside the computer but not for what happened
on-screen. In fact, “ invisible operation ” here, with all the
insistence on speed in the paragraph, presumably means
that compression and decompression take place quickly
enough for their occurrence to introduce no observable
delay in functioning. If the students had asked themselves
why “ speed is critical for invisible operation ” from a file
user’s point of view they might have come to the same
conclusion.

Assess the technical precision or appropriateness of
a word or statement.

It sometimes happens that the author of a technical text
says something which does not seem to be totally consistent
with what s/he has said so far. This provides another
opportunity for testing whether a learner has thoroughly
understood the drift of the preceding text and, if not, to
show him or her how to improve understanding via a more
thoughtful approach. For example, in the text “ Interleaving:
delivering the data on time. ” (Appendix 2) the following sta-
tement occurs in paragraph 3

If instead of following one another, sectors with successi-
ve numbers have one or more other sectors between them,
the next sector will be approaching the disk drive head
Jjust when the controller is ready for it.

One of the questions posed concerning this text (see
Appendix 2 for others) was: “ Do you think the word “ just ” is
appropriate here? Justify your answer. ” This question was
given because the information given up to this point in the
text could lead the reader to wonder how it is that the other

144

That’s not English, that’s computing!

tasks needing to be done always get done just in time for the
next sector to be read. This seems too good to be true. It
seems more reasonable to suspect that sometimes these
tasks must get done well before the arrival of the next sec-
tor, sometimes just before and sometimes after (or even well
after) the arrival of the next sector. In fact, the text confirms
this suspicion in the next paragraph when it raises the pos-
sibility of one interleaved sector not being enough.
Nevertheless, many students — including some who had taken
the teacher’s advice to read all the text before answering any
questions - did not hesitate to affirm that the word “ just ”
was, indeed, perfectly appropriate but they offered little in
the way of justification other than an unquestioning faith in
modern technology and the pronouncements of journalists.
When this happened the students were asked to think
about the following questions:
- Given what the text has said about the various tasks which
have to be done other than reading disk sectors, what condi-
tions would have to be fulfilled in order that, invariably, the
next sector would be approaching the disk drive head just
when the controller was ready for it?
- Given the variety and nature of these extra tasks, are these
conditions likely to be met with every time?

Fill in missing details in a process description.

A task of this sort was provided by the text “ Speed rea-
ding: choosing between software and hardware caches ”
(Appendix 3) where, in the last paragraph (below) , the term
check to the contents of the cache is sufficiently lacking in
explicitness as to puzzle some students when they are
asked to say what it is, exactly, that is checked.

With this, the most frequently accessed pieces of data, up to
the capacity of the cache, are stored. When the cache is full
and some other piece of data not presently in the cache is
loaded, then the least accessed of the data already in the
cache is flushed and replaced by the new data. The down
side of this is that the machine incurs the overhead of
having to check to the contents of the cache with every tran-
saction. But as the data read from the cache is delivered at
an exponentially higher rate, the overall result is better
throughput. As disk caches will always cache the directory,
substantial performance increases can be gained in loca-
ting a given file alone

145

Meélanges CRAPEL n° 27

In these cases, the students concerned were invited to
look for answers to the following questions :
What exactly is a transaction ?
What do you need to do at a detailed step by step level in order
to carry out the process described in the sentence “ When the
cache is full ... ” ? Is there any checking involved here ?

while bearing in mind what they had understood so far
and, in particular, what they had understood of the four
preceding sentences. For a potential difficulty here for the
reader is that the text talks about flushing the least acces-
sed data when the cache is full and space is needed for new
data but does not go so far into detail as to say that the least
accessed data has to be identified before it can be flushed.
This is an understandable omission which the author, had
he wished to be perfectly clear, might have repaired in the
next sentence by saying that this is what happens when the
machine “ checks to the contents of the cache ”. As the text
stands, the reader has to deduce this for him or herself.

Fill in missing links in a cause-effect chain.

We have already seen one example of this kind of task
at the start of this paper. Another one is provided by the
text Spin Doctoring (Appendix 4) where, just before the end
we have :

Server administrators typically strive to put data that
belongs together in the same area on a hard drive to redu-
ce the effective seek times of drive access. Thus, their
access time is especially sensitive to changes in latency:

The Thus at the start of the second sentence gives the
impression that everybody should grasp, almost without
having to think about it, why it is that “ their access time is
especially sensitive to changes in latency ”. In fact, here, a
very small tree of a word is hiding a sizeable wood of cogi-
tation which may involve some or all of the steps below.

- Going back in the text to refresh one’s memory on the
meaning of “ seek time .

- Going back in the text to refresh one’s memory on the
definitions of “ access time ” and “ latency ”.

- Realising that the key to understanding the assertion
made is in the access time equation given earlier in the text.
- Thinking about the access time equation and having
the mathematical perception needed to see that access

146

That’s not English, that’s computing!

time is going to vary more sharply with changes of laten-
cy if seek time is small.

Draw a diagram.

Asking the students to represent their understanding
of part of a text in the form of a diagram revealed problems
that mere translation often hides. The following task,
given with the text How interrupts work. (Appendix 5)
appeared feasible enough but frequently gave trouble
because it requires more than a passive reading of the
passage concerned.

Paragraphs 6, 7, 8. Draw a diagram showing: the flags register,
processor, IRQ, Software, interrupt enable flag, INTR, interrup-
ting device, interrupt input and how they are connected.

To do the diagram, one needs to pull together informa-
tion from the foregoing paragraphs (that the interrupting
device and the processor are at the opposite ends of the
system; what the IRQ is and does) and then, by a careful
reading of paragraphs 6, 7 and 8 to visualise the way the
remaining items fit into the picture.

Carry out a calculation.

This is another effective way of seeing whether part or
all of a text has been really understood or not. The text Wait
States (Appendix 6) was given, for example, along with the
following task:

Some years back, a computer manufacturer included the follo-
wing details in an advertisement for his latest machine:
80386X, 33 MHz, 8 megabytes O wait state RAM and, further
on, 80 ns memory. In fact, the information given contains a lie.
Where is it? Why can this statement only be a lie? (Hint: you
will need to do a small calculation.)

The text Wait States has to be followed attentively if the
reader is to be in a position to perceive that the dubious
information must lie in the claim of O wait state with 80 ns
memory and then to investigate what is wrong by calcula-
ting the clock period of the computer concerned. This
reveals that the latter is less than the 80 ns memory access
time and hence, that the O wait state claim is impossible.

This particular question had the happy advantage of
appealing to the sleuthing instinct of some of the students.

147

Mélanges CRAPEL n° 27

No great ingenuity was required to devise it, since the germ
of the question was contained in the continuation of the
text, which the students did not see. Finding other ques-
tions of this sort was sometimes facilitated by texts
introducing illustrative calculations which could be handed
on to the students to do by doctoring the texts so that the
calculations did not appear. However, this is a slightly dirty
trick to play since it renders the texts more difficult to
understand than their authors intended. Other examples of
this kind of task may be found in questions 3 and 4 of
Appendix 2 and in question 8 of Appendix 8.

Write a computer instruction or short program
using extracts from a programming manual.

Of all the activities given, this one and that below were
certainly those which were most relevant for the future
computer programmers who received them. Fortunately,
the abundance of teaching literature available concerning
the principal computer languages aids in the preparation of
exercises, since these works often contain worked examples
and problems with solutions which can be given accompa-
nied by the relevant manual pages. An example is provided
in Appendix 7 where the pages of the IRIX 5.2 manual cor-
responding to the csplit and ed commands are shown. The
students were provided with these pages together with the
following programming task to carry out.

Use the IRIX manual extract provided (ANNEXE) to carry out
the programming exercise below.

/usr/dict/mots is a file containing a list of French words in dic-
tionary order, i.e. starting:

ABACA

ABACULE

ABAISSABLE

and continuing line by line to the end of the file at:
ZYMOTECHNIE

ZYMOTIQUE

ZYTHUM

Write the instruction which splits the file into two halves, the
first containing all words up to (but not including) ELLE, the

148

That’s not English, that’s computing!

second containing the rest. Warning: don'’t forget that the word
ELLE is contained in certain other words (BELLE, BELLE-
MERE, BIELLE, CRECELLE etc.)

The csplit command was something the students had
never seen before, but the task given was not expected to
give them too much trouble since they were already using
the manual in English regularly as part of their studies in pro-
gramming. In fact, nearly half the students came to grief on it
when tested under examination conditions. The pages given
are, it has to be admitted, pretty heavy going for weaker stu-
dents. They contain vocabulary problems in places, a sticky
passage which doesn’t need to be understood to solve the
problem given, and a fair amount of digesting and selecting
to do. The extraordinary answers givenn by some students
suggested that they had either been overwhelmed by the
text and had given up trying or hadn’t even bothered to look
at it.

Predict the effect of executing a computer instruc-
tion or short program.

This activity is the inverse of that described above. Once
again, the students are supplied with manual extracts, but
this time they get ready-made computer instructions or bits
of programs and have to say what they think these will do
when they run. For instance, the IRIX 5.2 manual pages in
Appendix 7 were given with the question:

What will be the effect of running the following instruction ?
csplit ~k prog.c %main (%’ ‘/~}/+1° {20}

The question now is: what sort of results were achieved
by these “ get them thinking ” activities? Unfortunately, the
answer is “ pretty disappointing ones. ”.

It was possible, via individual monitoring of students
during regular interviews and common entry/exit tests to
get an idea of whether any progress had been made. For the
great majority of students no perceptible change occurred.
Only 10% of the students showed signs of engaging more
actively and effectively with the texts and achieving signifi-
cantly better results in the tests. Very often, the students
who improved were those who had failed end-of-year exams
the year before and were now going round the course for a
second time and trying a lot harder.

149

Mélanges CRAPEL n° 27

So what went wrong? Well, lots of different things went
wrong, but there was a root cause.

Most teachers, no doubt, have their limitations and failings
and the author is generally the first to find fault with himself
in this field, but the basic problem here does seem to have
been that the overwhelming majority of the students involved
were just not interested in doing English or any other foreign
language. This was confirmed when other language teachers
arrived on the scene, for until then, the author had been the
only language teacher in the establishment and these stu-
dents his only students. Before their arrival, he could be held
to be the principal cause of student dissatisfaction and work-
shyness. The English and German teachers who joined him
towards the end of the work described above, despite running
“ straight ” courses, soon complained of their new students,
declaring them to be the most dismayingly unmotivated,
intractable and unrewarding they had ever had. A new
English teacher, freshly arrived from teaching youngsters in
secondary school found no difference between the behaviour
of these 20 - 23 year olds and her previous charges. Any
remaining doubts that anyone might have entertained on this
subject were, hopefully, removed recently when a student
spokesman informed the head of department that the stu-
dents didn’t give a damn for foreign languages (“ Les langues,
on s’en fout. 7).

Under these conditions, any kind of innovation which -
as this one did - demanded both intellectual effort and a
substantial change in ingrained classroom habits was pro-
bably going to meet learner resistance. And so it proved.

The majority of the students concerned by this work
complained of the difficulty of the exercises and avoided doing
them whenever they could. They often pointed out - despite
frequent justificatory input from the teacher - that this sort of
work wasn’t English, it was Computing (hence the title of this
paper - a quote from a student who came to see why she had
had a very good mark for an almost impeccable translation of
a text and a very bad one for her answers to follow-up ques-
tions designed to test whether the text had been understood:
Ca, c’est pas de UAnglais. C’est de lInformatique). Worse
marks than usual were a frequent cause of friction with stu-
dents used to being marked on their talent as translators.

150

That’s not English, that’s computing!

Irritation over the need to think Computing in the English
class was compounded by their conviction that they really
had no problems at all in reading, that the exercises were a
waste of time and that, instead, the teacher should have been
giving them what they were used to being given: grammar
exercises to do and debates where everybody was made to
talk English. Above all, no Computing in English. A place for
everything and everything in its place. (A short calculation
designed to check understanding of part of a text was rejec-
ted by a glowering student who declared: “ I don’t do Maths
in an English class.”) Irritation was also provoked by the fact
that an English teacher allowed himself a modest amount of
expertise in Computing. This surfaced in the form of “ testing
” (sly catch questions or the making of idiotic technical pro-
nouncements with a straight face) and one or two direct
demands for credentials (* What qualifications have you got
in Computing anyway? ”).

Naturally enough, the students did not keep their dis-
gruntlement to themselves but vented it regularly in the
direction of the teachers entrusted with the smooth running
of the department. This led to much explaining viva voce and
in writing on the part of the author over a period of 5 years.
To little effect though. The students were right and the
English teacher was wrong. The official “ advice ” from above
(admittedly from colleagues with much other work to do and
who were doing a harassing job on a voluntary basis) was to
keep away from Computing and give the students what they
were used to : grammar, vocabulary and pronunciation (for
this had been good enough for the colleagues when they had
been taught English). The students didnt go to English
classes to think; they had plenty of that to do elsewhere. Two
or three colleagues in Computing or Mathematics did, howe-
ver, approve of the author’s efforts and one publicly deplored
the lack of support given by the other teachers. Another,
shortly before extricating himself from the department confi-
ded that the frustration which had provoked his departure
coincided with that of the author.

Working conditions of this sort? are hardly an ideal ter-

2 One or two similar experiences have been reported (personal communi-
cations) by language teachers seeking to innovate in other French higher
educational departments where languages are ancillary subjects.

151

Meélanges CRAPEL n® 27

rain for testing novel approaches and, in the present case,
did little to bolster the innovator’s self-esteem or procure
him refreshing sleep at night, so the exercises described
above were, in the end, to all intents and purposes phased
out and replaced by less controversial activities. There
would seem to be little hope for the innovator who finds him
or herself faced with both unmotivated students and an
antagonistic departmental ethos. A close-knit, determined
team of teachers could probably survive the latter (it is har-
der to sideline several like-minded teachers than one
enthusiastic but misguided eccentric) but slim indeed are
their chances of making much headway with students who
are a) not interested and b) do not even (now) need to get a
good mark in English to get their diploma.

The reader may be thinking, Well, yes. Poor chap. Very
sad and all that. But ... for heaven’s sake. Is there all that
much of a problem? Surely written ESP English is clear
enough for the most part, isn’t it? O.K It sounds as though
the students really were pretty awful. But fancy expecting
them to keep fiddling about trying to answer smarty-pants
questions on bits of texts they probably wouldn’t have
understood any better in their own language. Isn’t there
enough to do just getting learners to read English about as
well as they do their own language, let alone having to beco-
me a computer expert as well? ”

Well, one thing at a time. Firstly, is there all that much
of a problem? This question did occasionally cross the
author’s mind when skimming fruitlessly through text after
text in search of tricky passages for a new exercise. But
actually the students turned out to be better than him at
the job, discovering problems in places where he had seen
none. And curiously enough, it was only when the work
described in this paper had already been abandoned for
several years (and that student levels had sunk even fur-
ther) that the teachers of Computing could be heard talking
more frequently about manuals both French and English
and saying things like:

“ They (the students) get into terrible trouble with the
error messages because they don’t go down deep
enough.”

“ The trouble is that they (the students) don’t see the

152

That’s not English, that’s computing!

implicit content. ”

And the teachers had problems sometimes too. In both
English and French.
“If they'd set out to write it so that nobody could unders-
tand it they wouldn’t have written it any differently to
this. ”
“ There’s a lot of implicit stuff in it. ”
“ Oh my goodness, yes. Manuals are really heavy going.”

All this happened in one small part of a university in
north-eastern France, but there seems no reason to think
that things are so much different elsewhere. Indeed, at the
same time that the author was doing battle with his stu-
dents and superiors, in the United States a Professor of
Chemistry was writing to the Royal Society of Chemistry’s
Education Division in London to say that:

“ Among undergraduate teachers a frequently heard
lament is, ‘the bright ones are brighter than ever but so
many of the rest seem to be unable to read’. Probably
what is meant here is that the situation is not so much
that they are unable to read as that they seem unable to
understand what they read. ” (Markham. 1995)

“ Hal ” interrupts the now triumphant reader. “ French
Computing teachers struggling with manuals in French?
American students not understanding their Chemistry
books? There. That proves it. This isn’t a foreign language
problem at all. It’s a universal mother-tongue -reading-for-
special-purposes problem. No business of a foreign
language teacher at all. You don’t expect us all to become
experts in Computing, Chemistry, Finance, Law and every-
thing else just so we can neglect our responsibilities as
English teachers and drive our learners (and ourselves)
potty, do you? ”

Well, no. Of course not®. But if there is a universal
mother tongue reading for special purposes problem that
spills over into foreign language reading for special pur-
poses, who is going to do something about it ? Do foreign
language teachers have to wait until mother tongue tea-

3 Although I feel it is not unreasonable to ask a language teacher to get to
know something about his or her students’ main subject if these are the
only students s/he teaches.

153

Mélanges CRAPEL n° 27

chers do the job for them? Why shouldn’t they have a go
themselves? But maybe people already are doing something
about the problem and I've been too busy in my little corner
to notice. A quick survey suggests, however, that nothing on
a massive scale is happening. In the field of English for
Computing, as we have seen, many of the French students
in the author’s classroom a few years back seemed to have
previously approached reading on computing subjects
mainly via translation. Past papers for the French BTS exa-
mination in English in computer-related disciplines at that
time (J.F.Dreyfus. 1995) also feature translation and sum-
mary writing of moderately technical or adapted texts. A
cursory look at the reading comprehension sections of a few
English for Computing course books from the late 80’s to
the mid 90’s (see bibliography) reveals a majority of non-
authentic texts at a very basic technical level with questions
and tasks which do not appear to test much more than
superficial and piecemeal understanding of explicit infor-
mation. A recent update on the writer’s students’ previous
work in reading technical texts showed that translation and
summary writing were still alive and well and were accom-
panied by vocabulary trawling and answering questions on
texts at both general public and specialist level. The ques-
tions posed, according to the students, called for knowledge
of English but rarely of Computing. Implicit information is
often mentioned in the literature as a problem in reading
comprehension, but if the TOEFL questions on it are typical
of what the problem is generally perceived to be (see footno-
te pp 2-3) then, so far, learner-readers have only been asked
to recover relatively easily accessible implicit information
compared with that in the example given at the start of this
paper (p.1).

It seems possible, then, that more might be done in the
field of LSP reading to equip learners with strategies not
only for penetrating authentic technical writing rendered
difficult by authorly haste, but also to help them with texts
which are relatively clearly written but need sustained short
range attention and appropriate navigational and selection
techniques if they are to be understood and used effective-
ly in professional life. Despite his failure to make much
headway with the activities described in this paper, the
author is reluctant to abandon the idea that this approach

154

That’s not English, that’s computing!

is on the right track and that better results might be obtai-
ned with more enthusiastic learners and more supportive
subject specialists.

However, if anybody else envisages work of this kind on
authentic specialised texts, it is, in the author’s opinion,
vital for him or her to acquire some knowledge of the sub-
ject. Apart from the fact that learner confidence in the
teacher may be eroded or utterly destroyed when s/he is
caught out in gross technical error, subject familiarity faci-
litates the identification of likely problem passages in a text,
helps with explaining things and, above all, is of crucial
importance when it comes to appealing to (or completing) a
learner’s technical knowledge in order to guide his or her
thought processes when difficulties arise. Without this last
kind of help from the teacher, the learner is probably not
going to get very far with learning to think himself or herself
out of the kind of tight textual corners where purely lin-
guistic input from the teacher is not sufficient.

Obviously, the vast majority of LSP teachers are going
to have neither the inclination nor the time to swot up
Medicine or Forestry or Avionics or whatever, let alone all
three or more if they have learners specialising in a variety
of disciplines. Nevertheless, valuable work using activities
of the kind indicated in this paper might, surely, be done
using texts dealing with subjects with which both student
and teacher are familiar. It would then be necessary to
investigate to what extent any skills acquired by learners in
this way transfer to their reading of texts in their own field
of specialisation.

A final idea. The sudden (but not universal) interest
aroused in students when specialised technical documents
of use to them in an imminent or just beginning program-
ming project were presented in the author’s English
classroom suggests an avenue which might be explored
where a sympathetic and co-operative teaching environ-
ment exists: language teachers working in collaboration
with the specialist teachers. These latter are the people who
understand the guts of the texts better than we do and who
are taken seriously by students for whom languages and
language teachers are a bit of a joke and for whom the main
discipline is the important stuff that gets you more marks

155

Mélanges CRAPEL n° 27

and pots of money afterwards. In the field of Computer
Programming, for instance, ad hoc help on comprehension
problems with manuals in English (when these are the only
source of information available) could be integrated with
practical programming work with computing teacher or lan-
guage teacher, or both, on hand as helpers. In this way, the
students would get more realistic and motivating exposure
to English reading than in the English classroom and could
get help in understanding the language better, rather than
just being fed the answers by brighter students (which is
what happens at present). Indeed, to encourage the weaker-
in-English students to rely more on their own efforts,
examination questions in programming might even involve
comprehension of a programming manual in English where
no French translation of the manual exists. This kind of
ploy, of course, is perilously likely to call forth protests in
the form of the back-to front version of this paper’s title, i.e.
That’s not computing, that’s English. One of the author’s
colleagues in Computing actually took (spontaneously and
to his everlasting credit) the risk of including in a program-
ming test, a final exercise involving reference to an unseen
extract from the English-only manual. Most of his students
didn’t even attempt to do the question. Some of these, pre-
sumably, couldn’t do it because of the English. The others,
little doubt, wouldn’t do it because of the English. And this
sort of nonsense will go on as long as there is not more real,
nitty-gritty speciality in the teaching of LSP for reading, and
as long as learners and teachers alike insist on classroom
separation of foreign language and speciality skills which
need to be practiced together if they are to be used together
successfully in understanding foreign language specialist
literature.

156

That’s not English, that’s computing!

BIBLIOGRAPHIE

BROOKS, M and LAGOUTTE, F (1993). English for the com-
puter world. Paris : Belin. 176p.

BROUKAL and WOODS, N (1991). NTC’s preparation for the
TOEFL. Lincolnwood : NTC. 228p..

DREYFUS, J.-F (1995). BTS Anglais, tertiaires et industriels.
Sujets corrigés. Paris : Nathan.

GLENDINNING, E.-H and McEWAN (1989). English in com-
puting. Edinburgh : Nelson.

HICK (1991). English for Information Systems. Hemel
Hempstead : Prentice Hall.

MARKHAM, J.-J (1995). Royal society of chemistry’s educa-
tion division annual report. Cambridge.

WALKER, T (1989). Computer science. Londres : Cassell.

157

Mélanges CRAPEL n° 27

Appendix 1 : On-the-Fly Compression

Data compression works by translating a representa-
tion of data from one set of symbols to another, more
concise series of symbols. On-the-fly compressors use a
variety of lossless compression algorithms. and most manu-
facturers are tight-lipped about the exact techniques.
However, the most common algorithms for general lossless
compression are variations on dictionary-based schemes
such as LZ (Lempel-Ziv) and its patented cousin LZW
(Lempel-Ziv-Welch). For example, Stacker uses a compres-
sion algorithm that Stac Electronics calls LZS for
"Lempel-Ziv-Stacker."

Dictionary-based compressors use symbols to represent
recurring strings in the uncompressed input. An encoding
dictionary maps these symbols to the strings they repre-
sent. With most dictionary algorithms, the decompressor
can completely reconstruct the encoding dictionary from
the compressed data stream - the compressor doesn't need
to explicitly include a decoding table.

LZ and sirnilar techniques make for fast compression
and decompression, although decompression is usually
somewhat faster. Both attributes serve on-the-fly compres-
sors, since speed is critical for invisible operation and read
accesses are often far more common than writes.

Like all lossless compression, on-the-fly compression
works by removing redundancy in the source data; therefo-
re, it's highly dependent on the input data type. Source data
with a high degree of redundancy (e.g. bit maps or mostlv
empty databases) compress verv well, while more random
data (e.g. executable binaries or precompressed archives)
don't compress well at all. Text files usually land somewhe-
re in thc middle.

Byte

Appendix 2 : Interleaving: delivering the data on time

1 Each circular track of a hard disk is divided into sec-
tors - arcs of the circle that contain equal portions of the
data stored on that track. You may well ask, "Why don't
they make the entire track one huge sector?" The answer is

158

That’s not English, that’s computing!

that the disk drive controller must always read or write
whole sectors at a time. Having only one sector per track
would mean that every read or write would require as much
as two revolutions of the disk; up to one revolution to get to
the beginning of the track and another full revolution to
read it. (The designers of the Commodore Amiga, inciden-
tally, tried to implement this approach with floppy disks,
but they added a special trick. The unique Amiga disk drive
controller can start a read or write operation at any point on
the track - something no other controller I know of can do.
This sets the time for every read or write to exactly one revo-
lution of the disk. Alas, the latency is still a bit long, causing
the Amiga floppy discs to exhibit lackluster performance
except on large files.

2 Each track of a standard IBM PC hard disk contains
17 sectors of 512 bytes each. The outermost ring in figure A
shows the most obvious arrangement of the sectors. They're
placed in ascending order around the track, from 1 through
17. (This is called 1-to-1 interleave.) In practice, however,
this might not be the most efficient arrangement. Often,
disc drive controllers, disk I/O routines. and the host sys-
tems they run in require time between accesses to
successive sectors. They may use this time to transfer data
to and from memory, acquire control of the system bus, set
up direct-memory-access channels, or allow other I/O to
take place. If the time required for these tasks is too long,
the controller may find that the next sector it wants is alrea-
dy under the disk drive head - or past it - by the time
everything is ready.

3 Interleaving solves this problem. If instead of following
one another, sectors with successive numbers have one or
more other sectors between them, the next sector will be
approaching the disk drive head just when the controller is
ready for it. The second ring from the outside in figure A
shows an example of 2-to-1 interleave, in which sectors
with successive numbers always have one other sector bet-
ween them. The order becomes 1, 10, 2, 11, 3, 12, 4, 13, 5,
14, 6, 15, 7, 16, 8, 17, 9.

4 If the system can keep up with it, 1-to-1 interleave will
generally provide the best performance. But there are seve-
re performance penalties if the interleave factor is too low.

159

Mélanges CRAPEL n° 27

The controller will "miss" each sector - possibly by only a
few hundred microseconds and will have to wait until it
comes around again. If the interleave factor is set one notch
too high (say 3-to-1 instead of 2-to-1) the penalty isn't near-
ly as bad.

5 The optimum interleave may be different even for two
operating systems on the same machine. On my 8-MHz AT
clone - not a particularly fast machine by today's standards
- DOS works best at a 1-to-1 interleave. OS/2, however,
likes a 2-to-1 interleave; the intervening sector gives the
system time to handle interrupts and switch in and out of
protected mode as needed.

Direction
of rolation

Figure A : Arrangements of sectors for different interleave factors.
At one-to-one interleave, the sectors are numbered in sequence ;
at 2-to-1, sectors with consecutive numbers are separated by one
other sector, ans so on.

Interleaving: delivering the data on time
Questions.

1. 4éme phrase du texte: quels sont les temps maximum
et minimum de lecture d'un secteur dans le cas d'un disque
du type dont il est question dans cette phrase?

2. La 2éme phrase du 3éme paragraphe affirme que: If
instead of following one another, sectors with successive
numbers have one or more other sectors between them, the
next sector will be approaching the disk drive head just when

160

That’s not English, that’s computing!

the controller is ready for it. Comment comprenez-vous the
next sector? Est-ce que 'emploi du mot just dans cette phra-
se vous parait entiérement approprie? Expliquez votre
réponse a cette derniére question.

3. Voir le 4éme paragraphe. Soit un IBM PC dont le
disque dur a un “ interleave factor” de 2:1 seulement alors
qu'il aurait fallu un “ interleave factor ” de 3:1 Calculez le
temps "perdu” (en secondes) lors de la lecture de toute une
piste. On suppose que la lecture commence au début du sec-
teur I et que le disque tourne a 3600 tours/minute. Montrez
clairement comment vous avez obtenu votre réponse.

4. Maintenant (méme machine que ci-dessus), calculez
le temps "perdu" en secondes en lisant toute une piste
quand 1' "interleave factor ” est de 3:1 alors que 2:1 aurait
suffi. Montrez clairement comment vous avez obtenu votre
réponse.

Appendix 3 : Speed reading: choosing between software
and hardware caches

I've read several articles recently about optimising caches
and they all seem to offer conflicting advice. As I understand
it, my PC has two hardware caches and possibly two soft-
ware caches. The Intel 25MHIlz 486SX chip has a 128K
memory cache. The Promise DC-4030VL card has a further
2Mb of disk cache. MS-DOS gives me SMARTDRV, and now
I read that my Windows for Workgroups gives me something
called VCACHE! Are all these caches doing the same job?
Should I be using them all on one system? Is there a quick
way to determine the optimum settings? Do I need them at
all? Are other software caches any better than those sup-
plied by Microsoft?

Malcolm Surgenor Falkirk, Scotland

Probably the first thing we need to address is what a cache
actually does, regardless of whether it’s software or hardware
based. In essence. a cache is a location in the computer’s memo-
ry where small chunks of data are stored ready for retrieval. The
idea is that these bits of memory can be accessed faster than the
main store, be that a disk or RAM.

161

Mélanges CRAPEL n° 27

The most common software disk cache currently available,
especially on Windows machines, is SMARTDRV.EXE.
Windows for Workgroups comes with an updated version called
VCACHE. SMARTDRVand VCACHE perform exactly the same
function, but the former is compatible with both DOS and
Windows, so needs to sit in DOS memory (around 28K of it).
VCACHE, on the other hand, is a Windows VxD driver and
requires no DOS memory, but will only work for DOS applica-
tions if they're running in the Windows environment. It’s also
worth noting that VCACHE can be used with the standard 3.1
edition of Windows.

In a software disk cache, information on the disk is stored in
RAM, where it can theoretically be retrieved at around 100,000
times faster than from the disk. A cache is essentially a buffer
between a slower device like a disk drive and faster one, such
as the processor. As caches are typically smaller than the devi-
ce they’re caching—a typical SMARTDRVsetting would be 2Mb
for a 240Mb hard disk— some logic is needed to establish what
is stored in the cache. The most common method is to use the
'most frequently accessed' equation.

With this, the most frequently accessed pieces of data, up to
the capacity of the cache, are stored. When the cache is full and
some other piece of data not presently in the cache is loaded,
then the least accessed of the data already in the cache is flu-
shed and replaced by the new data. The down side of this is
that the machine incurs the overhead of having to check to the
contents of the cache with every transaction. But as the data
read from the cache is delivered at an exponentially higher rate,
the overall result is better throughput. As disk caches will
always cache the directory, substantial performance increases
can be gained in locating a given file alone

PC Magazine

Appendix 4 : Spin Doctoring

Access time is the most widely used indication of the
speed of a hard drive. Access time is the sum of the avera-
ge seek time - how long on average it takes the head to move
to the correct track - and the latency - how long on average
it takes the desired data on the correct track to move under

162

That’s not English, that’s computing!

the head. (Advertisements often, deliberately or accidental-
ly, confuse access time with seek time. They also usually
quote the lower - faster - read-seek time rather than the
higher - slower - write-seek time.)

The seek time depends on the size of the drive (e.g. 3.5
inch), the number of tracks per inch (tpi, which itself
depends on such things as the size of the magnetic
domains), and the speed and precision of the head actua-
tors. The latency depends upon the spin rate: the rotational
speed of the disk. Latency is half the time it takes for a com-
plete rotation of the disk. The actual throughput also
depends on the layout of the magnetic domains: You can
pack more sectors in the tracks near the outer edge than on
tracks nearer the center. This approach is referred to as
zone - bit recording.

One way to improve the access time is to reduce this
latency by speeding up the rotation of the disk (the spindle
speed). Faster spin rates generally mean better performan-
ce. In the olden days (a few years ago), all desktop spindle
speeds were the same: 3600 rpm. The resulting latency
(time for half a rotation) was 8.3 milliseconds.

Top - speed hard drives for desktop PCs these days
rotate at 5400 rpm, 50 percent faster, for a latency of 5.6
ms. Some current hard drives rotate at 4500 rpm, for a
latency of 6.7 ms. Many hard drives for portable computers
still use a rotation speed of 3600 rpm in order to consume
less power.

Current hard drives for servers rotate at an even zippier
7200 rpm, twice as fast as the old brand. Their latency is
4.17 ms, half the old latency. This is especially significant
for transaction - oriented servers, points out James Porter,
president of Disk/ trend (Mountain View, CA}. a company
that monitors drive business and technology. Server admi-
nistrators typically strive to put data that belongs together
in the same area on a hard drive to reduce the effective seek
times of drive access. Thus, their access time is especially
sensitive to changes in latency. Reduce the latency signifi-
cantly and you have a happy server administrator.

Byte

163

Mélanges CRAPEL n° 27

Appendix 5 : HOW INTERRUPTS WORK

Our daily lives are filled with asynchronous events that vie for
our time, interrupting the orderly, sequential plan for the day. The
telephone rings; there's a knock at the door; the baby cries for a
diaper change. You can't predict their occurrence and plan them
into your schedule, yet they must be accommodated. You could, of
course, regularly check (or poll) for events—Is the phone ringing?
Is someone at the door? Does the baby need to be changed?—but,
clearly, that would be an inefficient use of time; it is better to let
such asynchronous events capture your attention as they need to.

2 Similarly, your computer must respond to asynchronous
events (e.g., keyboard presses, mouse movements, disk accesses,
timer time-outs, and data communications). If the processor in
your computer had to continually poll the various I/O devices, it
would not be very efficient at doing the real work you ask of it. So
to maintain efficient use of the processor's time, computers use
interrupts to handle asynchronous events.

3 Like people, a processor executes instructions in a schedu-
led, sequential manner until an interrupt request (IRQ) occurs.
When this happens, the processor drops what it's doing and ser-
vices the interrupt, and then resumes sequential execution where
it left off.

4 As for supporting interrupts, the conventional imple-menta-
tion of today's PC systems is lacking in some areas, but certain key
problems have been overcome in the newer EISA and Micro
Channel expansion buses. Following is a detailed look at how PCs
handle interrupts.

Interrupt Basics

5 There are three general types of interrupts that can occur in
a PC: hardware interrupts, software interrupts, and processor
exceptions. Hardware interrupts are the focus of this article, but
INl describe the others as well.

6 I/O devices electrically generate hardware interrupts to get
the attention of the processor. The first PCs, of course, used Intel's
8088 processor, which has essentially the same functionality as
the newer 286, 386, and 486 processors operating in real mode.
All these processors have two pins that are used for interrupt pur-
poses: INTR and nonmaskable interrupt (NMI).

Maskable Interrupts

7 INTR is the conventional interrupt input to the processor.

164

That’s not English, that’s computing!

This interrupt input is maskable, meaning that it can be enabled
or disabled under software control. An interrupt enable flag (IF) in
the FLAGS register enables INTR interrupts when set and disables
them when cleared. With interrupts enabled, when the INTR input
goes high, the processor completes its current instruction and
then responds to the IRQ with two successive interrupt acknow-
ledge (INTA) cycles.

8 The first INTA cycle is essentially a dummy to ready the
interrupting device for the second INTA cycle. During the second
INTA cycle, then, the interrupting device must place an 8-bit inter-
rupt-vector (sometimes called an interrupt-type} byte onto the data
bus to further direct the processor's handling of the interrupt. In
most systems, including PCs, a special IC called an interrupt
controller interacts with the processor to place the interrupt vec-
tor on the data bus at the appropriate time.

9 When the processor receives the interrupt type from the
interrupting device, it multiplies the value by 4 (by shifting it 2 bits
to the left) to create an offset into the interrupt-vector table. This
table—which contains 256 4-byte entries (1 KB total) starting at
the very bottom of memory— holds the addresses of the service
routines for the implemented interrupts. Note that a maximum of
256 distinct interrupts can be supported in this fashion.

10 The processor now retrieves the 4 bytes at the calculated
offset in the interrupt-vector table to form a pointer to the inter-
rupt-service routine; the pointer is in standard 80x86
segment:offset format. After pushing the FLAGS register onto the
stack and clearing the IF bit in the FLAGS register, the processor
begins to execute the ISR.

11 To keep problems from occurring after returning to the
interrupted program, the ISR has to save any CPU registers that it
uses and restore them when it is finished. An ISR generally termi-
nates with an interrupt-return (IRET) instruction, which restores
the FLAGS register from the stack (reenabling interrupts) and
resumes program execution where it left off. The figure shows the
steps that are involved in processing an interrupt after the inter-
rupt-type byte has been received.

Byte

165

Mélanges CRAPEL n° 27

E Appendix 6

HfWait States

3.2.1 The System Clock

‘At the most basic level; the system.clock handles all synchronization within a computer system. The system
‘clock is an electrical signal on the control bus which alternates between zero and one at a periodic rate:

One Clock
“Peribd”

1
o LI L L L
TiME e

i

The frequency: with which the system clock alternates between zero-and .one is ‘the system clock frequency.
The time it takes for the system clock to switch from zero to one and back to zero is the clock period. One full
penod is also called a clock cycle: On most modern systems, the system clock switches between zero.and orie
at rates exceeding several million t1mes per second The clock frequency is sunply the number of clock cycles.
which occureach second : .

¥

3.2.2 Memiory Access and the Systei Clock

Memory access is probably the’ most: common -CPU - activity, ‘Memory.‘access i3 deﬁnitely an- operation
: synchronized around the system clock. . .

Memory access time is the nmount of tlme between a memory operation request (read or write) and the time

the memory -operation completes On'a 5 MHz 8088/8086 CPU the memory :access time is roughly 800 s
(nanoseconds): On .50 MHz 80486, the memory access time is slightly less than 20 nos.

3.2,3 Wait States

A wait state is nothmg more than an ‘extra clock cycle to glve some devwe time to complete an operation. For

example, a 50 MHz 80486 system has a 20.ns clock period. This implies that you need 20 1is merory: In fact,
. “the situation is worse than this. Tn most compiter systems there is additional circuitry between the CPU and
" memory: decoding and buffering logic. This additional circuitry introduces additional delays into. the system: |

5 ns delay
: through —— =
! decoder

i
£
£
5
“scoaan

;_CPU(_ |)

5 ns delay

. -— through
buffer

166

That’s not English, that’s computing!

In this dmgrum, the system loses 10ns to buffering and decodmg So if the CPU needs the data back in 20 ns,
the memory must respond in less.than 10 ns.

You can-actually buy 10ns memory. However, it is very expensive, bulky, consumes a lot’of power, and
generates “a ‘lot of heat. These-are bad:attributes.” Supercomputers. use this ‘type of memory. However;
supercomputers also cost millions, of dollars, take lup entire rooms, require special cooling, and bave giant
power supplies, Not the kind of stuff you want sitting on your desk.

If cost-effective memory won't work with a fast processor; how do companies manage. to sell fast PCs? One
part of the answer is the wait state. For example, if yon have a 20 MHz processor with a memory cycle time
of 50 ns and you lose 10 ns to buffering and decoding, you'll need 40 ns meimory. What if you can only afford
80 ns memory in a-20 MHz system? Adding 2 wait state to extend the memory cycle to 100 ns (two. clock
cycles) will solve this problem. Subtracting 10ns for the decoding and buffering leaves 90 ns. Theréfore, 80
ns memory will respond well before the CPU requires the data.

Almost every general purpose CPU.in existence provides 2 signal on the control bus to-allow the insertion of
wait ‘states. ‘Generally, the ‘decoding circuitry“assertsthis line to-delay oneadditional clock’ period, if
necessary. This givés the memory sufficient access time, and the system works properly

e % 1

] The CPU reads the
datafromthe date

! The me mory system must bus during this time
i The CPU places decodetheaddessand peried

. .theaddresson placethedstaonthe data

: the add ress bus bus during this Hime period,

; duting this time since ome chck cyck i insufficient,

; ~ period the syste msaddsa second chekowk,

|) & wod siale

Sometimes. a single wait state is. riot sufficient. Consider the 80486 running at 50 MHz. The normal memory

' “-cycle time is Jess than 20 ns. Therefore, less than 10 ns are available after subfracting decoding and buffering

“time. If you are using 60 ns memory.in the system, adding a single wait state will niot do the trick. Each wait
state gives you 20 ns, so with-a single wait state you would need .30 ns memory. To . work with 60 ns memory
you would need to add three ‘wait states (zero wait states = 10 ns, one walt state.= 30,05, two wait states = 50
ns, and thrée wait states'= 70.ns).

Needless {0 say, from the system performance point of view, wait states are'not a good thing. While the CPU
is waitirig for data from memory it cannot operate.on that data. Adding a single wait state-to a memory cycle
~on an 80486 CPU doubles the amournt of time reqlired to access the data. This, in turn, halves the speed .of

the niemory .access. Running with a’wait 'state on every memory access is almost like cutting the processor
‘clock frequency in half. You're gomg to.geta lot less work done in the same amount of time. 8

You’ve probably seen the ads, "80386DX 33°MHz, 8 megabytzs 0 wait:state. RAM,.; only $1 000!" If 'you
look closely-at the-specs youll notice ‘that the manufacturer is using 80 ns memory How, can they -build
systems which run at 33 MHz ‘and have zefo wait states? Easy. They lie.:

There is no-way-an 80386 can run at 33 MHz, executing an arbitrary program,-without ever inserting a wait
state. It is flat out impossible. However, it is quite possible to.design a memory subsystem which under
certain, special, circumstances manages to operate without wait states part of the time. Most marketing types -
figure if their system ever operates at zero. wait states, they can make that claim ‘in their literature: Indeed,
most ‘marketing types have no idea what a wait state is other than it's bad and having zero wait stutes is
something to brag about.

However, we'te tiot doomed to slow execution because of added wait states, There are several tricks hardware
desiguers can play to ‘achieve zero wait states most of the time. The most comimon of these is the use of cache -
(pronounced 'cash”) memory.

v Art of Assembly Langu'age. Randall Hyde.
: ' 167

Mélanges CRAPEL n° 27

Appendix 7 : Man Page Interface for IRIX 5.2
The following is the man page for csplit(1):
csplit(1)

NAME

csplit - context split

SYNOPSIS

csplit [-s] [-k] [-f prefix] file argl [argn]
csplit(1)

DESCRIPTION

csplit reads file and separates it into n+1 sections, defi-
ned by the

arguments argl ... argn. By default the sections are pla-
ced in xxOO0xxn

(n may not be greater than 99). These sections get the
following pieces

of file:

00: From the start of file up to (but not including) the
line referenced by argl.

01: From the line referenced by argl up to the line refe-
renced by arg?2.

n: From the line referenced by argn to the end of file.
If the file arqument is a -, then standard input is used.

csplit processes supplementary code set characters,
and recognizes supplementary code set characters in the
prefix given to the -f option (see below) according to the loca-
le specified in the LC_CTYPE environment variable [see
LANG on environ(5)]. In regular expressions, pattern
searches are performed on characters, not bytes, as descri-
bed on ed(1).

The options to csplit are:
—s

csplit normally prints the number of bytes in each file
created. If the -s option is present, csplit suppresses the
printing of all byte counts.

csplit normally removes created files if an error occurs.

168

That’s not English, that’s computing!

If the -k option is present, csplit leaves previously created
files intact.

-f prefix If the -f option is used, the created files are
named prefixQO...prefixn. The default is xx0O0...xxn.
Supplementary code set characters may be used in prefix.

The arguments (argl...argn) to csplit can be a combina-
tion of the following:

Jrexp/ A file is to be created for the section from the
current line up to (but not including) the line containing the
regular expression rexp. The line containing rexp becomes
the current line. This argument may be followed by an
optional + or - some number of lines (for example, /Page/-
5). See ed(l) for a description of how to specify a regular
expression.

%rexp% This argument is the same as /rexp/, except
that no file is created for the section.

Inno A file is to be created from the current line up to
(but not including) Inno. Inno becomes the current line.

{num}Repeat argument. This argument may follow any
of the above arguments. If it follows a rexp type argument,
that argument is applied num more times. If it follows Inno,
the file will be split every Inno lines (num times) from that
point.

Enclose all rexp type arguments that contain blanks or
other characters meaningful to the shell in the appropriate
quotes. Regular expressions may not contain embedded
new-lines. csplit does not affect the original file; it is the
user's responsibility to remove it if it is no loner wanted.

NAME
ed, red - text editor
SYNOPSIS

ed [-s] [-p string] [-x] [-C] [file]
red [-s] [-p string] [-x] [-C] [file]
DESCRIPTION

ed is the standard text editor. red is a restricted version
of ed. If the file argument is given, ed simulates an e com-

169

Mélanges CRAPEL n° 27

mand (see below) on the named file; that is to say, the file is
read into ed's buffer so that it can be edited. Both ed and
red process supplementary code set characters in file, and
recognize supplementary code set characters in the prompt
string given to the -p option (see below) according to the
locale specified in the LC_CTYPE environment variable (see
LANG in environ(5)).

In regular expressions, pattern searches are performed
on characters, not bytes, as described below.

-s Suppresses the printing of byte counts by e, r, and w
commands, of diagnostics from e and q commands, and of
the ! prompt after a !shell command.

-p Allows the user to specify a prompt string. The string
can contain supplementary code set characters.

-x Encryption option; when used, ed simulates an X
command and prompts the user for a key. This key is used
to encrypt and decrypt text using the algorithm of crypt(1).
The X command makes an educated guess to determine
whether text read in is encrypted or not. The temporary buf-
fer file is encrypted also, using a transformed version of the
key typed in for the -x option. See crypt(l). Also, see the
NOTES section at the end of this reference page.

-C Encryption option; the same as the -x option, except
that ed simulates a C command. The C command is like the
X command, except that all text read in is assumed to have
been encrypted.

ed operates on a copy of the file it is editing; changes
made to the copy have no effect on the file until a w (write)
command is given. The copy of the text being edited resides
in a temporary file called the buffer.

There is only one buffer.

red is a restricted version of ed. It allows only editing of
files in the current directory. It prohibits executing shell
commands via !shell command. Attempts to bypass these
restrictions result in an error message (restricted shell).

Both ed and red support the fspec(4) formatting capa-
bility. After including a format specification as the first line
of file and invoking ed with your terminal in stty -tabs or
stty tab3 mode (see stty(1)), the specified tab stops are auto-
matically used when scanning file. For example, if the first
line of a file contained:

170

That’s not English, that’s computing!

Page 1
ed(1) ed(1)
<:t5,10,15 s72:>

tab stops are set at columns 5, 10, and 15, and a maxi-
mum line length of 72 is imposed. When you are entering
text into the file, this format is not in effect; instead, becau-
se of being in stty -tabs or stty tab3 mode, tabs are
expanded to every eighth column.

Commands to ed have a simple and regular structure:
zero, one, or two addresses followed by a single-character
command, possibly followed by parameters to that com-
mand. These addresses specify one or more lines in the
buffer. Every command that requires addresses has default
addresses, so that the addresses can very often be omitted.

In general, only one command can appear on a line.
Certain commands allow the input of text. This text is pla-
ced in the appropriate place in the buffer. While ed is
accepting text, it is said to be in input mode. In this mode,
no commands are recognized; all input is merely collected.
Leave input mode by typing a period (.) at the beginning of
a line, followed immediately by pressing RETURN.

ed supports a limited form of regular expression nota-
tion; regular expressions are used in addresses to specify
lines and in some commands (for example, s) to specify por-
tions of a line that are to be substituted. A regular
expression specifies a set of character strings.

A member of this set of strings is said to be matched by
the regular expression. The regular expressions allowed by
ed are constructed as follows:

The following one-character regular expressions match
a single character:

1.1 An ordinary character (not one of those discussed in
1.2 below) is a one-character regular expression that
matches itself.

1.2 A backslash (\) followed by any special character is
a one-character regular expression that matches the special
character itself. The special characters are:

a.., * [, and \ (period, asterisk, left square bracket, and
backslash, respectively), which are always special, except
when they appear within square brackets ([|; see 1.4 below).

171

Mélanges CRAPEL n®° 27

b. ~ (caret or circumflex), which is special at the begin-
ning of a regular expression (see 4.1 and 4.3 below), or
when it immediately follows the left of a pair of square brac-
kets ([]) (see 1.4 below).

c. $ (dollar sign), which is special at the end of a regu-
lar expression (see 4.2 below).

d. The character that is special for that specific regular
expression, that is used to bound (or delimit) a regular
expression. (For example, see how slash (/) is used in the g

Page 2
ed(1) ed(1)
command, below.)

1.3 A period (.} is a one-character regular expression
that matches any character, including supplementary code
set characters, except newline.

1.4 A non-empty string of characters enclosed in squa-
re brackets ([]) is a one-character regular expression that
matches one character, including supplementary code set
characters, in that string. If, however, the first character of
the string is a circumflex (#), the one-character regular
expression matches any character, including supplementa-
ry code set characters, except newline and the remaining
characters in the string. The * has this special meaning
only if it occurs first in the string. The minus (-) can be used
to indicate a range of consecutive characters, including
supplementary code set characters; for example, [0-9] is
equivalent to [0123456789]. Characters specifying the
range must be from the same code set; when the characters
are from different code sets, one of the characters specifying
the range is matched. The - loses this special meaning if it
occurs first (after an initial A, if any)} or last in the string.
The right square bracket (]) does not terminate such a string
when it is the first character within it (after an initial », if
any); for example, [Ja-f] matches either a right square brac-
ket (]) or one of the ASCII letters a through f inclusive. The
four characters listed in 1.2.a above stand for themselves
within such a string of characters.

The following rules can be used to construct regular
expressions from one-character regular expressions:

2.1 A one-character regular expression is an regular
expression that matches whatever the one-character regu-

172

That’s not English, that’s computing!

lar expression matches.

2.2 A one-character regular expression followed by an
asterisk (*) is a regular expression that matches zero or
more occurrences of the one-character regular expression,
which can be a supplementary code set character. If there
is any choice, the longest leftmost string that permits a
match is chosen.

2.3 A one-character regular expression followed by
\im\}, \{m,\}, or \{m,n\} is a regular expression that
matches a range of occurrences of the one-character regu-
lar expression. The values of m and n must be non-negative
integers less than 256; \{m\} matches exactly m occur-
rences; \{m,\} matches at least m occurrences; \{m,n\}
matches any number of occurrences between m and n
inclusive. Whenever a choice exists, the regular expression
matches as many occurrences as possible.

2.4 The concatenation of regular expressions is an
regular expression that matches the concatenation of the
strings matched by each component of the regular expres-
sion.

Page 3
ed(1) ed(1)

2.5 A regular expression enclosed between the charac-
ter sequences \(and \) defines a sub-expression that
matches whatever the unadorned regular expression
matches. Inside a sub-expression the anchor characters ((")
and ($)) have no special meaning and match their respecti-
ve literal characters.

2.6 The expression \n matches the same string of cha-
racters as was matched by an expression enclosed between
\(and \) earlier in the same regular expression. Here n is a
digit; the sub-expression specified is that beginning with
the n-th occurrence of \(counting from the left. For
example, the expression ~\(.*\)\1$ matches a line consis-
ting of two repeated appearances of the same string.

A regular expression can be constrained to match
words.

3.1 \< constrains a regular expression to match the
beginning of a string or to follow a character that is not a
digit, underscore, or letter. The first character matching the
regular expression must be a digit, underscore, or letter.

173

Meélanges CRAPEL n° 27

3.2 \> constrains a regular expression to match the end
of a string or to precede a character that is not a digit,
underscore, or letter.

A regular expression can be constrained to match only
an initial segment or final segment of a line {or both).

4.1 A circumflex (#} at the beginning of a regular expres-
sion constrains that regular expression to match an initial
segment of a line.

4.2 A dollar sign ($) at the end of an entire regular
expression constrains that regular expression to match a
final segment of a line.

4.3 The construction ~regular expression$ constrains
the regular expression to match the entire line.

The null regular expression (for example, //) is equiva-
lent to the last regular expression encountered.

